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Community functionalities as in
Fornito et al., 2012

Tutorial
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. Resolution to cluster the graph
Computes a consensus community structure gamma>1: detects smaller modules
across all SUbjECtS O<=gamma<1: detects larger modules
gamma=1: classic modularity (default)

A

Group community structure

I All subjects ]
Computes consensus community structures | - |
WO groups
for two groups and compares them /
Resolution (gamma): 1.0

| Pre-calculated groups |

|:| Classification consistency and diversity

|:| Partition distance (Min, Win} for two groups

|:| Vigualize modules with BrainMet viewer

Louwwvain

Implemented procedures work with fully

* as implemented in the BCT connected matrices and with thresholded
graphs

added community functionalities as in e.g.
Fornito et al., 2012
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Consensus Community structure - general procedure (text adapted from Dwyer et al. 2014):

1. Individual level modular decomposition:

We run multiple iterations (1000) of the Louvain/Newman modularity algorithm (which
is an optimization algorithm and thus produces slightly different outcomes per iteration)
to obtain a set of possible clusters in the graph. To identify the final clustering solution,
we use a consensus-based approach in which we generate a co-classification matrix (in
which each [i, j] element contained 1 if two nodes were classified in the same module
and 0 otherwise) and subsequently run a second decomposition of this co-classification
matrix (c.f. Lancichinetti and Fortunato, 2012). In this manner, nodes frequently co-
classified in the same module across multiple iterations of the algorithm will be assigned
to the same module in the final solution.

Individual level

2. Group-level modular decomposition:
To obtain a group based consensus of the graph decomposition, we pass the final
consensus decompositions for each individual to a second level to derive a group-level
representation of network modularity based on a similar logic to the consensus
approach used at the single-subject level. Specifically, the individuals final consensus
Group level decompositions are summed across individuals to generate a sample-level consistency
matrix. A high weight in elements of this matrix indicates that two nodes were
> frequently classified in the same module across individuals. As such, a subsequent

\(\6 modular decomposition of this group-level consistency matrix ensures that nodes
Q frequently co-classified together are likely to be assigned to the same module in the final
solution.

A 4

(JP‘ By aggregating results across single-participant decompositions, this consensus-based
(\x approach allows to derive a group-level representation of community structure while
o (O also characterizing interindividual variability in network organization using classification
\\\l~ consistency and diversity metrics. Such analyses are not possible when decomposition is
! performed on a group-averaged correlation matrix. Consensus-based approaches have
'\\ also been shown to yield more stable individual module solutions, given the known
degeneracy of most graph theoretic module detection algorithms (Good et al., 2010;
Lancichinetti and Fortunato, 2012).
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TESTING BETWEEN-GROUP DIFFERENCES IN MODULAR ORGANIZATION:

To evaluate the significance of between-goup differences in modular organization we use
a permutation approach. By permuting labels across groups and re-calculating the
difference between groups in the respective modularity metric (see next slide) we obtain
a distribution of this group difference under the null-hypothesis. By placing the real
group difference “delta” in the random distribution of deltas we can determine the
significance from its percentile position in the distribution.
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If you have perfomed previous modularity analyses on different
sets of subjects with the “All subjects” function, you can compare
the results by loading the respective “GroupCommunity” folder
(similar to “Two groups” function)



Measures of modular organization I:

Group community structure OPTIMAL MODULAR DECOMPOSITION - Q (text adapted from Fischi-Gomez et al., 2016 ):
I All subjects l In the Louvain modularity algorithm, Q is obtained by iteratively repeating 2 steps
| | until convergence to a modularity maximum (Q).
Two groups
Resolution (gamma): | 1.0 First, each node is placed in a separate module, and all possible node moves

between modules are evaluated in terms of modularity gain (step 1). When no

Pre-calculated groups | . .. . .
| individual move can further improve the Q value, nodes belonging to the same

e e e community are agglomerated (step 2) in order to form new ‘super-nodes'. Step one
[ Partition distance (Min, Vin) for two groups (moves evaluation) is repeated on the new ‘super-nodes' network. The two steps
[] Visualize modules with BrainNet viewer are repeated until convergence.
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Measures of modular organization Il:
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CLASSIFICATION CONSISTENCY AND DIVERSITY (text adapted from Fornito et al., 2012):

To understand the functional roles played by each module and their constituent nodes, one can examine the
consistency and diversity with which different regions are coclassified into the same module across participants.

Classification consistency is estimated by computing the within-module strength, z, of each node in the group-level consistency
matrix. Classification diversity is computed using the diversity coefficient h .

Applied in this context, z quantifies the degree to which each region is classified in the same module across participants relative to
other nodes in the same module. Brain regions with high z values represent core components of their module and thus act as local
connectivity hubs. The diversity coefficient, h, quantifies the variability of each region’s modular assignment across participants.
Regions with high h have a relatively equal probability of being classified into different modules across participants, because their
connectivity is dispersed between modules from individual to individual. These regions, therefore, represent transitional nodes
that facilitate functional integration between modules.
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Measures of modular organization lil:

PARTITION DISTANCE (text adapted from Fischi-Gomez et al., 2016):

Group community structure

Quantifies the distance between pairs of community partitions with information

I i l theoretic measures: mutual information and variational information (Meila, 2007).
| Two groups |
These two measures, based on the concept of entropy, quantify similarities and
Resolution (gamma). | 1.0 differences between graphs partitions. The mutual information (Ml) quantifies how
much information is shared by the two (different) partitions Ci and Cj of a given network
| Pre-calculated groups | G. Roughly speaking, Ml tells how much we learn about Ci if we know Cj, and viceversa.
Nevertheless the most commonly used measure of similarity in graph is the normalized
"] Classification consistency and diversity mutual information (MIn), introduced by (Danon et al., 2005). This measure equals 1 if
Partition distance (Min, Vin) for two groups the two partitions are identical, whereas it has an expected value of 0 is the two
["] Vizsualize modules with BrainMet viewer partitions are independent.
The variation of information (VI) expresses the quantity of information intrinsic to the
two partitions, corrected by the information shared by the two partitions. VI is up-
bounded by the logarithm of the number of nodes (log n) and can be therefore
normalized by this value, giving a rescaled value of VI to the range [0,1].
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Saved output in folder ,,Group Community“:

Group 1

Group 2

R,

— 4

R,

Binarized Affiliation vectors (one per module)

Gru:uup_l_[l.l_f'-ﬂu:uduIes_GrDupCDmmUni/ ere ae )

Group. 1. Binary, Affiliation Vectors. 0.1 / Affiliation vector (assignment of nodes to modules)
Group_1_modularity_group_Louvain_Affiliation_1_2 . .
__—— Group-level consistency matrix

Group_1_modularity_group_Louvain_Agreerment_Matrix 1_2

Group_1_modularity_group_Louvain_Diversity_Meg 1 _2
Group_1_modularity_group_Louvain Diversity Pos 12 ————  Classification diversity (one value per node)

Group_1_moedularity_group_Louvain_Q 1_2

Gru:uup_l_r'n-:u|:||_|Iarit}r_grnup_Lnuvain_E-Scu:ure_l_E\p Modularlty quallty IndeX Q*
Group_1_Maodules_GroupCommunity_0.1 \

Group_1_Modules_GroupCommunity 0.1_hz_plot Classification consistency (one value per node)
Group_2_01_Medules_GroupCommunity

Group_2_Binary_Affiliation_Vectors_0.1 Afflllatlon vector as table

Group_2_modularity_group_Louvain_Affiliation_1_2
Group_2_modularity_group_Louvain_Agreement_Matriz 1_2
Group_2_modularity_group_Louvain_Diversity_Meg_ 1_2
Group_2_modularity_group_Lowvain_Diversity_Pos_1_2
Group_2_rmodularity_group_Louvain_Q 1 2
Group_2_modularity_group_Louvain_Z-5core 1 2
Group_2_Modules_GroupCommunity_0.1
Group_2_Modules_GroupCommunity_0.1_hz_plot

Figures created by BrainNetViewer and zh-Plots are also saved in this folder



Saved output in folder ,,GraphVars“:

Difference in h between groups
Difference in Q between groups
Difference in Z between groups

actual_delta_h
actual_delta_Q)
actual_delta_’

Min — between groups % actual_Min

Vin — between groups %] actual_VIn
Subject-level consistency matrices (one per subject) %] agreement_matrix_1_2
Permutation distribution of difference in h (sorted) %) distr_delta_h_group_perm
Permutation distribution of difference in Q (sorted) %) distr_delta_Q_group_perm
Permutation distribution of difference in Z (sorted) %) distr_delta_Z_group_perm
Permutation distribution Min (sorted) % distr_MIn_group_perm
Permutation distribution VIn (sorted) % distr_VIn_group_perm
Permutation generated Affiliation vectors of rand groups % group_1_perm_cC
Permutation generated h per region per permutation % group_1_perm_h
Permutation generated Q per permutation % group_1_perm_Q
Permutation generated Z per permutation % group_1_perm_Z

group_2_perm_C
group_2_perm_h
group_2_perm_Q

group_2_perm_Z
Subject-level consensus affiliation vector (one per subj) £ modularity_louvain_cOut_und_1_2

Overlap of nodes in modules: Group 1 -> Group 2 f8) Modularity_overlap_percent 1_2
Overlap of nodes in modules: Group 2 -> Group 1 f8) Modularity_overlap_percent 2 1
P-value for h (one per region) £ph

P-value for Min £ p_Mn

P-value for Q 0

P-value for Vin £ p \In

P-value for Z (one per region) #pz



Miscellaneous:

Binarized Affiliation vectors (one per module)

Group_1_Binary_Affiliation_Vectors 01

HH 90xt double
1 3 3 B 1 0 Brecentral L Precentral gyrus (Left) -40 -6 51
2 0 Brecentral R Precentral gyrus (Right) 40 -8 52
1 o 1 0 0 3 1 frontal_Sup_L Superior frontal gyrus, dorsolateral (Let -19 35 a2
2 0 1 0 0 4 1 frontal_Sup_R Superior frontal gyrus, dorsolateral (Rig 20 31 44
3 1 0 0 0 5 0 frontal_Sup_Orb_L Superior frontal gyrus, orbital part (Left -18 47 -13
4 1 0 0 0 6 1 frontal_Sup_Orb_R Superior frontal gyrus, orbital part (Righ 17 48 -14
5 1 0 0 0 7 1 frontal_Mid_L Middle frontal gyrus (Left) -34 33 35
5 1 0 0 0 8 1 frontal_Mid_R Middle frontal gyrus (Right) 37 33 34
9 0 frontal_Mid_Orb_L Middle frontal gyrus orbital part (Left) -32 50 -10 .
Y L 0 0 0 10 0 frontal_Mid_Orb_R Middle frontal gyrus orbital part (Right) 32 53 -11 N Et'l'l' Drk n udes .Il Erﬂln areas
8 1 0 0 0 11 0 frontal_Inf_Oper_L Inferior frontal gyrus, opercular part (Le -49 13 19
9 1 0 0 0 12 1 frontal_Inf_Oper R Inferior frontal gyrus, opercular part (Ri 49 15 21
10 1 0 0 0 13 1 frontal_Inf_Tri_L Inferior frontal gyrus, triangular part (Le -47 30 14
11 1 [ 0 0 14 1 §rontal_Inf_Tri_R Inferior frontal gyrus, triangular part (Ri 49 30 14 F‘rEI:.‘-EI'itrE| h Uz
12 1 0 0 0 15 1 frontal_Inf_Orb_L Inferior frontal gyrus, orbital part (Left) -37 31 -12 Superior frontal o
13 1 0 0 0 El 1 frontal_Inf_Orb_R Inferior frontal gyrus, orbital part (Right 40 32 -12
14 1 0 0 0 17 0 Rolandic_Oper_L Rolandic operculum (Left) -43 -8 14
18 1 Qolandic_Oper_R Rolandic operculum (Right) 52 -6 15
15 1 0 0 0 19 1 Jupp_Motor_Area_L Supplementary motor area (Left) -6 5 61 _>
16 1 0 0 0 — > 20 1 Jupp_Motor_Area_R Supplementary motor area (Right) 8 0 62
17 0 1 0 0 21 0 Pifactory_L Olfactory cortex [Left) -9 15 -12
18 [4) 1 0 0 22 0 Plfactory R Olfactory cortex (Right) 8 16 -11 . .
19 o 1 0 0 23 0 frontal_Sup_Medial L  Superior frontal gyrus, medial (Left) -6 49 31 M de IE frD ntﬂl g‘frus‘ ERIQ ht}
20 0 1 0 0 24 0 frontal_Sup_Medial R Superior frontal gyrus, medial (Right) 8 51 30 i |T| 3
n 0 0 1 0 25 0 frontal_Med_Orb_L Superior frontal gyrus, medial orbital (L -6 54 -7
26 0 §rontal_Med_Orb_R Superior frontal gyrus, medial orbital (F 7 52 -7
2z 0 0 1 0 27 0 Rectus_L Gyrus rectus (Left) -6 37 -18
23 1 0 0 0 28 1 fectus R Gyrus rectus (Right) 7 36 -18
24 1 0 0 0 29 1 fhsula L Insula (Left) -36 7 3
25 1 0 0 0 30 1 fpsula_R Insula (Right) 38 6 2
26 1 0 0 0 31 0 fingulum_Ant_L Anterior cingulate and paracingulate gy -5 35 14
27 1 0 0 0 32 1 fingulum_Ant_R Anterior cingulate and paracingulate gy 7 37 16
28 1 0 0 0 33 0 §ingulum_Mid_L Median cingulate and paracingulate gyr -6 -15 42
2 0 1 0 0 34 0 gingulum_Mid_R Median cingulate and paracingulate gyr 7 -9 a0
35 1 fingulum_Post_L Posterior cingulate gyrus (Left) -6 -43 25
30 0 1 0 0 36 1 fingulum_Post_R Posterior cingulate gyrus (Right) 6 -42 22
A 1 0 0 0 37 0 Qippocampus_L Hippocampus (Left) -26 -21 -10
32 1 0 0 0 32 1 Bippocampus_R Hippocampus (Right) 28 -20 -10

Simply use (one of) the binary affiliation vectors as input to the
BrainRegions xlsx sheet (first column) for subnetwork analyses



